2017最新中考動態
2017中考錄取分數線
2017中考成績查詢、中考查分
相似三角形的判定方法、解題技巧
作者:佚名 信息來源:本站原創 更新時間:2011-9-4
例1.(1)在平行四邊形ABCD中,G是DC延長線上一點,AG分別交BD和BC于點E、F,則圖中相似三角形共有_____對。
解答對策:<1>由平行四邊形對邊平行的性質得到相似三角形的基本圖形(平行八字、平行A字)清楚地展現出來,此處是學生掌握比較好的地方;再將相似的特殊情形如全等、相似的傳遞性加以強調,這部分內容是學生知識的漏洞之處,易混易錯。通過問題情境的鋪設,層層鋪墊,同學們既容易全面理解,又可以抓住解題規律,起到了突出重點、突破難點的效果。
<2>教師在解答此處時,利用幾何畫板輔助。通過將基本圖形從復雜圖形中分離出來,用不同顏色區分,同一顏色歸類,層次清晰,效果明顯!
答案:6對
(2)將△ACE繞點C旋轉一定的角度后使點A落在點B處,點E落在點D處,且點B、C、E在同一直線上,直線AC、BD交于點F,CD、AE交于點G, AE、BD交于點H,連接AB、DE。則以下結論中:①∠DHE=∠ACB,②△ABH∽△GDH,③△DHG∽△ECG,④△ABC∽△DEC,⑤CF=CG,其中正確的是______
解答對策:教師引領學生挖掘隱含條件,利用不同顏色將重要的圖形一一清楚地展現出來,同學們可以抓住解題方法、規律。教師通過創設情境,層層鋪墊,有利于學生的理解,有利于學生的遷移和技能的形成,有利于完善學生的知識結構,實現了突出重點、突破難點的意圖。
下面我們逐一分析每個結論:
結論①:由旋轉得,∠CEA=∠CDB=β,∠CBD=∠CAE=γ
∠1=∠CBD+∠CEA=γ+β,∠2=∠CAE+∠CEA=γ+β
所以得,∠1=∠2,即∠DHE=∠ACB
結論③:由∠CEA=∠CDB,∠DGH=∠EGC
所以得△DHG∽△ECG
(兩角對應相等的三角形相似)
結論④:由△DHG∽△ECG,得∠DHG=∠ECG
同理∠AHF=∠BCF,又∠DHG=∠AHF,
所以∠BCA=∠ECD
又AC=BC,DC=EC,所以△ABC∽△DEC
(兩邊對應成比例且夾角對應相等的三角形相似)
結論②:若△ABH∽△GDH,則∠ABH=∠GDH=β
則∠BAC=∠CBA=γ+β,∠ACD=∠BAC=γ+β
在△ABH中,γ+β+γ+β+α=180o
點B、C、E共線,γ+β+α+α=180o
解方程,得α=60o,則△ABC是等邊三角形,與已知矛盾,則結論②不成立。
由已知條件推不出結論⑤,即CF=CG不一定成立。
答案:①③④
兩個三角形全等是兩個三角形相似的特例,此時,相似比為1
相似三角形的判定方法、解題技巧
2016年中考信息不斷變化,www.txjunshi.com 91中考網提供的中考成績查詢查分、錄取分數線信息僅供參考,具體以相關招生考試部門的信息為準!